
Investigating Using LLM for Close-Coding Tasks on
Software Engineering Domain

Robiul Islam
miislam@wm.edu
William and Mary

Williamsburg, Virginia, USA

Abstract
Artificial Intelligence (AI) rapidly transforms many areas,
including education, healthcare, and daily life. A major dri-
ver of this change is Large Language Models(LLMs), pow-
erful AI systems capable of understanding and generating
human-like text. In this study, we explore how LLMs can
support qualitative research in software engineering. Quali-
tative research involves analyzing non-numerical data such
as interview transcripts or open-ended survey responses to
identify patterns and themes. In this study, we focus on a
method known as closed coding, where researchers apply
predefined codes to the data to systematically identify key
ideas. To help LLMs perform close coding, we use prompt
engineering, the practice of carefully designing questions
or instructions to get accurate and useful responses from
the model. Our results show that LLMs can effectively assist
with close coding, potentially making qualitative analysis in
software engineering faster and more efficient.

ACM Reference Format:
Robiul Islam. 2025. Investigating Using LLM for Close-Coding Tasks
on Software Engineering Domain. In . ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large Language Models (LLMs) have been used for different
sectors, from healthcare to education. Historically, software
development was a manual process involving multiple stages
such as requirements gathering, hand-coding, debugging,
testing, and deployment all performed predominantly by
humans without significant automation. However, new de-
velopments in powerful language models have introduced
the possibility of automating numerous tasks across different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Conference’17, Washington, DC, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/10.1145/nnnnnnn.nnnnnnn

areas of software development, such as bug fixing [36], code
summarization [35], code completion [21], and assert state-
ment generation [31]. Software engineering increasingly
uses LLMs because they offer a new way to handle tasks, es-
sentially reframing them as problems of examining informa-
tion, programs, and written material. LLMs demonstrate sig-
nificant promise in revolutionizing how numerous software
engineering activities are carried out. Within the field of soft-
ware engineering, when dealing with non-numerical infor-
mation, language models are becoming crucial tools. These
models can greatly speed up the process of finding and under-
standing key information from extensive amounts of written
material, effectively turning a time-consuming task into an
automated procedure. The conventional method for analyz-
ing information relies heavily on skilled individuals, leading
to prolonged timelines and substantial labor investments.
LLMs are being applied to interpret non-numerical data
across various research areas, including human-computer
interaction [12]. Traditional methods of data analysis rely
heavily on human judgment and expertise. However, the rise
of LLMs marks a significant shift toward more automated
and intelligent analysis systems. These models can process
large volumes of qualitative data, such as user feedback,
software documentation, and development logs, to uncover
meaningful insights. As a result, LLMs not only make the
analysis process faster and more efficient but also allow for
more detailed and nuanced interpretations of the data, which
were often difficult to achieve with manual methods. Numer-
ous researchers have investigated how LLMs can be applied
to the analysis of qualitative data. Xiao et al. examine the use
of LLMs, such as GPT-3, to support deductive qualitative cod-
ing with pre-defined codebooks, without the need for model
fine-tuning [33]. Their findings indicate that LLM-generated
codes show fair to substantial agreement with expert anno-
tations, demonstrating the potential of LLMs in qualitative
analysis. However, the study does not explore why the model
fails to generate certain codes, nor does it provide a compar-
ative analysis of errors made by human annotators versus
those made by the model. Similar to previous work, Rasheed
et al. investigate the application of LLMs to automate and
streamline qualitative data analysis in Software Engineering
(SE), aiming to reduce the time and effort required for man-
ual coding [25]. While their multi-agent LLM framework
demonstrated improvements in processing efficiency and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Robiul et al.

scalability, the study does not provide a detailed analysis of
the model’s limitations, such as the reasons behind coding
errors or a comparison of failure cases between the model
and human annotators. Thus, we identify a current research
gap in understanding why LLMs generate incorrect codes or
fail to assign any code to certain survey responses.

Our study enhances the understanding of the limitations
and challenges in applying LLMs for qualitative coding, high-
lights key areas where future research and tool development
should focus, and offers a detailed discussion of potential
strategies to address these challenges.

To summarize, this paper makes the following key contri-
butions:
• We present a multi-agent framework leveraging LLaMA-
based language models to support qualitative close cod-
ing for open-ended survey questions, using pre-defined
codebooks to evaluate survey responses in Software En-
gineering.

• Our study provides an analysis of coding failures by both
human annotators and LLMs, identifying cases where
the model generated incorrect codes or failed to assign
codes.

• A replication package [23] containing the prompts, mod-
els, scripts, and documentation has been provided to
support future research in this area.

2 BACKGROUND AND RELATEDWORK
In this section, we briefly present the related work of the
study with a focus on existing research.

2.1 Large Language Models in Software Engineering
In recent years, LLMs have shown significant application
in various Software Engineering research [7]. LLMs, such
as ChatGPT [22], Llama [19], Gemini [9], are designed to
produce text that closely mimics natural human language [6].
GPT models stand out for their versatility in handling var-
ious language tasks, including translation, summarization,
question-answering, and creative writing, all without requir-
ing specialized training for each task [25]. GPT is a leading
example of LLMs, demonstrating their potential in diverse
applications that demand sophisticated language comprehen-
sion and generation [30]. LLMs show significant improve-
ment over traditional program synthesis on code generation
[16], code summarization [1], data analysis [24], text classifi-
cation [4], software development [26], code search [11], unit
test case generation [29], automated program repair [18],
etc. The LLMs are trained on vast amounts of source code
and natural language; these models can understand, gener-
ate, and manipulate code in various programming languages
and human-written text. Unlike traditional program synthe-
sis approaches, which depend on formal specifications or
domain-specific logic, LLMs are data-driven and capable of
generalizing from examples. Their ability to process both

code and natural language makes them especially useful in
real-world software development, where developer intent is
often expressed informally. Despite their promise, LLMs also
raise concerns related to code correctness, security vulnera-
bilities, explainability, and alignment with developer intent,
which are active areas of research.

2.2 Large Language Models in Qualitative Research
Researchers across various disciplines rely on qualitative
methods, particularly qualitative coding, which involves
labeling and categorizing textual data, to achieve their re-
search objectives. This form of coding is distinct from com-
puter programming and refers instead to the analysis of
non-numerical data, such as interview transcripts or closed-
ended survey responses. Qualitative coding enables scholars
to analyze and interpret complex phenomena within their
respective fields systematically. Many such studies gather
audio or video data, such as recordings of interviews, fo-
cus groups, or consultations, which are typically transcribed
into text for detailed analysis [2]. Qualitative data, encom-
passing non-numeric information such as text, interviews,
and observations, often requires extensive manual analysis.
Processing large qualitative datasets in this manner is time-
consuming and inefficient, highlighting the need for more
automated and scalable approaches. In this era of technologi-
cal advancements, there are plenty of software tools available,
such as ATLAS.ti [13], MAXDQA [17], and NVivo [5] de-
signed for qualitative data analysis. These tools, while effec-
tive for manual qualitative analysis, become inefficient and
time-consuming when applied to large datasets. They lack
modern, AI-driven automation that could enhance coding
accuracy, speed, and scalability. As the LLMs draw attention
to qualitative research, several researchers have used LLMs
for qualitative research, such as Bernerd et al., in their explo-
ration of using LLMs like ChatGPT for qualitative research.
They discussed several ways in which ChatGPT can signif-
icantly expedite the process of analyzing qualitative data.
Traditional qualitative research methods, like interviews and
open-ended surveys, are often time-consuming, especially
when it comes to tasks like transcription and coding, mak-
ing them less efficient for large datasets. By leveraging the
power of LLMs, the researchers demonstrated how tasks that
typically take weeks can now be completed in a matter of
hours [15]. Jie Gao et al. proposed CollabCoder. CollabCoder
can provide code suggestions, also it can help to develop a
codebook from scratch [8]. Ziang et al. found that instead of
fine-tuning, it is possible to use prompt engineering for qual-
itative analysis. They found the performance shifted when
they used one-shot learning instead of zero-shot learning
[34]. Robert et al. conducted interviews and collected the
data, then they created a codebook and input the sample
text and codebook into an LLM. Furthermore, they asked
the LLM to determine if the provided text is present in the
sample text, and if that is present, they asked for the evidence

Investigating Using LLM for Close-Coding Tasks on Software Engineering Domain Conference’17, July 2017, Washington, DC, USA

[28]. In the paper [3], Barany et al. compare four different ap-
proaches to codebook development: a fully manual method
with no ChatGPT involvement, a fully automated method
without human input, and two hybrid approaches where
humans contribute either at the beginning or the end of the
process. They found that whether GPT participates early
or last produces more reliable code and is rated better than
humans. They also found that there is little difference be-
tween the hybrid approach and the human approach. They
found that the fully automated which is ChatGPT, can have
a huge impact on improving the quality of the codebook,
but still human involvement is important. In the paper [32],
Alexander et al. conducted two types of interviews: one be-
tween humans and another between humans and AI. Their
study, involving university students in politics, revealed that
AI conversational interviews generated higher-quality data
comparable to traditional approaches. Zeeshan et al. intro-
duced an LLM-based multi-agent to automate various types
of qualitative data analysis [25]. In this study, we aim to
develop a system that can automate or partially automate
open-coding tasks, specifically assigning codes to survey
responses. To achieve this, we will use various models (such
as Llama3-8B, Llama3-70B, and Llama3-70B-Instruct) and
technique prompt engineering. Unlike some prior research,
which primarily focuses on generating key theme from the
survey response, our study centers on the annotation of sur-
vey responses. We utilize advanced models and techniques
that are more likely to yield accurate results. While earlier
studies have applied LLMs for coding based on predefined
codebooks, our approach introduces more flexibility and
provides a detailed analysis of why the model might fail to
assign the correct code.

3 STUDY METHODOLOGY
The primary goal of this study is to explore how LLMs can
support qualitative research methods—specifically, close cod-
ing in the context of software engineering. Traditionally,
assigning codes to open-ended survey responses is a time-
consuming task that requires careful human judgment. We
aim to investigate whether LLMs can help automate this
process while maintaining consistency and relevance. To
conduct this study, we use a diverse set of survey responses,
where participants answered domain specific questions re-
lated to software engineering. Trevor et al. [27], conducted
on a survey among 138 practitioners across five distinct stake-
holder groups: those experienced with SBOMs, members of
key open-source projects, professionals in AI/ML, experts
in cyber-physical systems, and legal practitioners. Differen-
tiated questionnaires were used for each group to gather
tailored insights. We selected 8 survey questions, each re-
ceiving 20 responses, resulting in a total of 160 responses for
analysis. The details of the dataset are provided in subsection
3.1.

Figure 1. Proposed system’s workflow for qualitative
data analysis

Each response was then evaluated to determine whether
it matched a predefined code based on its corresponding
definition. We employed a multi-agent prompting approach,
where three separate instances of an LLM were used, each
configured with a distinct prompt. Each model (agent) was
asked to assess whether a given survey response clearly and
directly aligned with a specific code definition. If out of nine
combinations, six were yes, then we assigned that code to the
response. We use Ollama [20] to send both the prompt and
the selected model at the same time, allowing it to return the
generated response. This method allowed us to compare the
behavior of differently prompted models, reduce individual
model bias, and explore the reliability of LLMs in supporting
close coding tasks.
This study aims to address the following research ques-

tions (RQs):
RQ1: How many times do the models assign the same code
as the human annotator?
RQ2: In how many cases do the models either assign extra
codes or fail to assign the same code as the human annota-
tor?
RQ3: In how many cases do the models generate at least
one code that is similar to the code written by the human
annotator?
RQ4: Is it always the case that the human annotator as-
signs the most appropriate code, or can the LLaMA model
sometimes assign a better-fitting code based on the code
definition?
RQ5: In a setup using 3 agents and 3 prompts (for a total of
9 decisions per response), how does a higher number of ’yes’
responses affect the chance of an exact match with human-
coded results?

In Figure 1, we present a detailed overview of our strategy,
highlighting the main steps and their interactions.

3.1 Dataset
The dataset used in this study consists of real-world survey
responses related to the topic of Software Bill of Materials

Conference’17, July 2017, Washington, DC, USA Robiul et al.

Table 1. Number of codes for each survey question

No. Survey Question Number of code

1 Q1 23
2 Q2 20
3 Q3 8
4 Q4 19
5 Q5 15
6 Q6 20
7 Q7 19
8 Q8 22

(SBOMs) [27]. It aggregates the results of five distinct sur-
veys conducted across various domains, including machine
learning and cyber-physical systems. These surveys were
designed to capture diverse perspectives on SBOM practices,
challenges, and implementation strategies. The dataset in-
cludes a variety of response types, such as multiple-choice
questions (MCQs) and text-only responses, enabling both
quantitative and qualitative analysis. We specifically focused
on text-based responses, where users shared their thoughts
regarding the questions. Our analysis concentrated on the
machine learning and cyber-physical system questions, as
each of these had 20 responses. We excluded other questions
with fewer responses, such as those with only 6. Table 1
shows the number of codes assigned to each question. Each
question received the same number of responses, which is
20.
Before analysis, the responses were anonymized to pre-

serve participant confidentiality. Minimal preprocessing, in-
cluding correcting typographical errors and normalizing
formatting in free-text answers, is performed to improve
the consistency and accuracy of the data without altering
its meaning. This ensures that the responses are clean and
uniform, making them easier to analyze while preserving
the semantic content. Without this step, inconsistencies like
spelling mistakes or formatting variations could introduce
noise, potentially affecting the reliability and validity of the
analysis. We consider the data that includes responses from
all participants. We collected the responses to seven ques-
tions from Machine Learning, and one from both Critical
Projects. For both categories, there are 20 responses for each
question. Some survey responses with the human annotator
with the llama-generated are available in Table 2. Out of 20
responses, 18 responses are shown there from the subset of
the dataset machine learning, and the question asked the
responders is: What are some of the benefits you expect to
see from using AIBOMs, if any?. The survey response and
the human codes present in the Table 2.

3.2 Pre-processing
Before conducting the analysis, the survey data underwent
several preprocessing steps to ensure consistency, clarity,

and usability. The preprocessing process was designed to
preserve the original meaning of the responses while min-
imizing noise and irrelevant variation. This study focuses
only on open-ended (free-text) responses; closed-ended ques-
tions such as multiple-choice (MCQs) were not considered.
First, any empty responses were removed from the dataset.
Then, we cleaned the text by removing unnecessary charac-
ters such as double quotation marks (e.g., converting "clear"
to clear), newline characters (\n), and extra spaces. This pre-
processing step improved tokenization, prevented parsing
errors, and enhanced the efficiency of the analysis, ensuring
more accurate and reliable results. All preprocessing steps
were carefully chosen to preserve the original meaning of the
responses while ensuring the dataset was clean, consistent,
and ready for reliable analysis.

3.3 Prompt Engineering
Prompt engineering is the process of designing and refining
input queries to guide the behaviour of LLMs such as Llama3
[10]. Since LLMs are sensitive to input phrasing and struc-
ture, the way a prompt is crafted can significantly influence
the quality, relevance, and reliability of the model’s output.
Effective prompt engineering involves clarifying task in-
structions, providing examples (few-shot prompting) [12], or
encouraging step-by-step reasoning (e.g., chain-of-thought
prompting) [14]. We initially started with a single prompt
where we provided the survey response, the assigned code,
and the definition of the code. The model was asked to ex-
tract key themes from the survey response and compare
them with the code. If any of the identified themes matched
the code, the model would return ’yes,’ and the code would
be considered relevant for that specific response. However,
the results from this approach were not satisfactory, leading
us to explore alternative techniques. Figure 3 presents the
initial prompt; however, we later refined this method for
improved accuracy and performance.

3.4 Agents
Previously, we used a single prompt to compare each survey
response with a code based on its definition. However, the
results were not consistent. To improve this, we adopted a
multi-agent approach, as shown in Figure 4. In this setup, we
use three different LLaMA models: LLaMA3-70B, LLaMA3-
70B-Instruct, and LLaMA3-8B.

Each model receives three different prompt versions, mak-
ing a total of nine combinations, as illustrated in Figure 2.
The three different prompt versions for each model were
derived through an iterative process aimed at improving the
accuracy and relevance of the model’s responses. Initially, a
basic prompt was created to assess the model’s ability to ex-
tract key themes and match them with the predefined codes.
Based on the performance of this initial prompt, adjustments
were made to refine the structure, clarity, and specificity of
the prompts. These changes aimed to better guide the model

Investigating Using LLM for Close-Coding Tasks on Software Engineering Domain Conference’17, July 2017, Washington, DC, USA

Table 2. Survey responses with human codes

Survey response Human codes

Increased reproducibility, easier iteration on previous works, more accessible resources,
earlier detection of weaknesses/vulnerabilities.

[’Security’, ’OpenAccess’, ’Reprodu-
cability’, ’ImprovedIteration’]

It will provide structure to help people document their work. [’BetterDocumentation’]

Similar answer to DataBOMs. [’Reproducibility’, ’IncreasedTrans-
parency’]

This would help developers not involved in the project have a better understanding of the
software they are working with.

[’Teaching’]

Unsure, not experienced enough with them. [’Unsure’]

Idealy I don’t have to implement features like versioing manually myself, and even get
inspired to use techniques that I usually don’t think of myself (e.g. I would have never
written code to monitor the GPU memory usage or GPU compute utility while training, even
if I didn’t have a tool that would monitor it for me.) and therefore ensure that I am using best
practices or to be more concrete, my colleagues with lesser experience use best practices
without me having to tell them everything.

[’BestPractices’, ’Automation’]

An example of usage for the model. [’ExampleModelUsage’]

Reproducibility. [’Reproducability’]

Reducing security risks. Making deployment/updates faster. [’Security’, ’FasterDeployment’]

As with DataBOMs, one big benefit is the ability to better detect biases and reproduce results. [’Reproducability’, ’DetectBiases’]

The secure and safe usage in critical domains. [’Security’]

Trustworthy – against supply chain type of attacks. [’Security’, ’Trust’]

As for the DataBOM, it would help increase the trust in the model. [’Trust’]

No comment [’BadAnswer’]

Might help with the so-called "reproducibility crisis" in AI, though frankly I’m skeptical. I
think the bigger benefit would be a CVE-like reporting of bias in datasets that let us see
which models should be updated.

[’Reproducability’, ’DetectBiases’]

Continous Integration of AI models. [’ContinuousIntegration’]

Similarly to dataBOMs, it could help with reproducing studies, better collaboration, faster
iteration and improvements of model. Bugs, biases, and fairness issues could be discovered
quickly.

[’ProblemLocation’, ’ImprovedItera-
tion’, ’DetectBiases’, ’Reproducabil-
ity’, ’BetterCollaboration’]

First and foremost, help manage compliance risk. [’Compliance’]

Conference’17, July 2017, Washington, DC, USA Robiul et al.

Table 3. Codes and Its definitions

Code Definition

Reproducability AIBOMs make it easier to reproduce work.
Security AIBOMs make it easier to detect/locate vulnerabilities or mitigate other security risks.
OpenAccess AIBOMs make it faster/easier to access resources associated with a system.
BetterDocumentation AIBOMs assist with documenting work.
IncreasedTransparency Increased transparency into how the data was acquired, processed, etc.
Teaching AIBOMs can help people unfamiliar with the project learn more about it.
Unsure Answer equivalent to I don’t know
Automation AIBOMs help to automate development tasks.
BestPractices The use of AIBOMs helps developers to follow best practices.
ExampleModelUsage The AIBOM provides an example of usage for the model.
FasterDeployment AIBOMs help developers make updates and deployments faster.
DetectBiases AIBOMs make it easier to identify potential biases in the model.
ProblemLocation AIBOMs highlight issues with models and make them easier to find.
VerifyUsability Help to verify usability of the system. (Vague answer)
Trust AIBOMs increase trust in the model.
ImprovedIteration AIBOMs will make the iterative process of improving on previous works much easier
ContinuousIntegration AIBOMs will facilitate the continuous integration of ai models
BadAnswer Response is not applicable or nonsensical.
BetterCollaboration AIBOM could make collaboration easier
Compliance AIBOMs will assist in managing compliance

Figure 2. Multi-agent system for verifying survey re-
sponse

in understanding the context of the survey responses and
the definitions of the codes.
For each model, the prompts were carefully tailored to

ensure that the language used was precise and aligned with
the model’s strengths. Different versions were tested, and the

most effective prompts were selected based on the models’
performance in matching survey responses to the correct
codes.

Every prompt includes four elements: the survey question,
the survey response, the code, and the code definition. The
model is then asked to decide if the survey response matches
the code based on its definition.
The threshold of "six" out of nine model-prompt combi-

nations returning a "yes" response was chosen to ensure a
robust consensus among the models. This approach mini-
mizes the likelihood of errors or biases from any single model
or prompt combination and ensures that the assigned code
has strong support across multiple perspectives. By setting
the threshold at six, we allow for some flexibility in case
of minor inconsistencies or ambiguities in individual model
responses while still ensuring that the majority of models
agree on the appropriateness of the code for the survey re-
sponse. This helps balance accuracy and reliability in the
final coding decision.

4 RESULTS
Our study aims to accurately assign the most appropriate
code to each survey response. Assigning one or more codes
to a response helps summarize its content and contributes to
a broader understanding of the overall survey findings. In our
approach, each prompt given to the language model includes
the survey response, a candidate code, the corresponding
code definition, and the question that was asked to the re-
sponder. We use the different LLaMA models to determine

Investigating Using LLM for Close-Coding Tasks on Software Engineering Domain Conference’17, July 2017, Washington, DC, USA

Figure 3. Prompt Engineering Technique-1

Figure 4. Decision making criteria for a survey re-
sponse

whether the given code accurately represents the survey
response based on the provided definition. The model se-
lects from a predefined codebook. For each survey response,
the model evaluates all codes in the codebook individually.
If the model responds “yes” to a specific code, that code is
assigned to the response. However, since the model can occa-
sionally assign incorrect codes, it is important to assess how
well it performs this task. To evaluate the model’s accuracy
in code assignment, we apply one performance metric. In
particular, we focus on the Exact Match metric, which mea-
sures whether the set of codes assigned by the model exactly
matches the set of codes assigned by human annotators.

Exact Match: Exact Match (EM) is a straightforward and
effective metric for evaluating the performance of LLMs in
classification tasks like code assignment. In our study, EM
is particularly suitable because the model does not generate

new codes it simply checks whether a given code from the
codebook matches a survey response based on the code’s
definition. This eliminates common issues such as case sen-
sitivity or partial overlaps. For instance, if the correct code is
“WM,” then “wm” would not exist in the codebook, avoiding
mismatches due to capitalization. Each survey response is
evaluated against all codes in the codebook. If the model
identifies a match (i.e., responds “yes”), that code is assigned
to the response. After processing, we compare the model-
assigned codes with the ground truth labels provided by
human annotators. EM measures how often the model’s set
of assigned codes exactly matches the human-assigned set.
Given the structured nature of our task selecting codes from
a fixed codebook EM serves as a precise and reliable metric to
assess the model’s effectiveness in replicating human coding
behavior.

4.1 RQ1: How model generate the same code as a
human annotator?

To evaluate the consistency of code assignments using LLMs,
we measured the frequency of exact matches between survey
responses and predefined code definitions. Figure 5 visualizes
the exact match results. The highest number of exact matches
occurred in Q7, with 11 matches, or 55%, indicating strong
alignment between model responses and the code definitions
in this area. However, Q5 showed 0 exact matches.

This variation suggests that the performance of the mod-
els may be influenced by factors such as the clarity and
specificity of the code definitions, as well as the complex-
ity of the topics discussed in the survey responses. In the
case of Q7, the model was likely able to identify clear, well-
defined themes that matched the predefined codes, result-
ing in higher accuracy. On the other hand, Q5 may have
contained more ambiguous or less clearly defined concepts,
making it harder for the model to make precise matches.
Additionally, the domain of the question, such as whether it
relates to well-established fields like machine learning, could
also play a role in the consistency of model alignment. Topics
with more structured and standardized language may lead
to more accurate and consistent code assignments, while
less clearly defined or more complex topics may introduce
variability in model performance. This variation underscores
the importance of having well-defined codebook categories
and clear, unambiguous survey questions to achieve more
reliable model outcomes.
In Table 4, we present the codes generated by the model

for each survey response. The order of the codes is not con-
sidered when comparing with human-coded responses, as
it typically depends on the predefined codebook structure.
However, when only one code is assigned, the model’s out-
put must match the human code exactly, such as a response
labeled "Trust" needing to be identified as "Trust" by the
model. Additionally, the table shows the verdict of the Llama-
generated code: the blue color () indicates that the model

Conference’17, July 2017, Washington, DC, USA Robiul et al.

Table 4. Survey information with LLaMA generated code

Survey response Human codes Llama generated Verdict

Increased reproducibility, easier iteration
on previous works, more accessible re-
sources, earlier detection of weakness-
es/vulnerabilities.

[’Security’, ’OpenAccess’,
’Reproducability’,
’ImprovedIteration’]

[’Reproducability’,
’Security’,
’ImprovedIteration’]

Model failed to assign code

It will provide structure to help people doc-
ument their work.

[’BetterDocumentation’] [’BetterDocumentation’] Exact Match

Similar answer to DataBOMs. [’Reproducibility’,
’IncreasedTransparency’]

[’BadAnswer’] Human annotator failed

This would help developers not involved
in the project have a better understanding
of the software they are working with.

[’Teaching’] [’BetterDocumentation’,
’Teaching’,
’BetterCollaboration’]

Model assign wrong code

Unsure, not experienced enough with
them.

[’Unsure’] [’Unsure’] Exact Match

An example of usage for the model. [’ExampleModelUsage’] [’ExampleModelUsage’,
’BadAnswer’]

Model assign wrong code

Reproducibility. [’Reproducability’] [’Reproducability’] Exact Match

Reducing security risks. Making deploy-
ment/updates faster.

[’Security’, ’FasterDeploy-
ment’]

[’Security’, ’FasterDeploy-
ment’]

Exact Match

As with DataBOMs, one big benefit is the
ability to better detect biases and reproduce
results.

[’Reproducability’, ’Detect-
Biases’]

[’DetectBiases’] Model failed to assign code

The secure and safe usage in critical do-
mains.

[’Security’] [’Trust’] Model assign wrong code

Trustworthy – against supply chain type
of attacks.

[’Security’, ’Trust’] [’Security’, ’Trust’] Exact Match

As for the DataBOM, it would help increase
the trust in the model.

[’Trust’] [’Trust’] Exact Match

No comment [’BadAnswer’] [’BadAnswer’] Exact Match

Might help with the so-called "reproducibil-
ity crisis" in AI, though frankly I’m skep-
tical. I think the bigger benefit would be a
CVE-like reporting of bias in datasets that
let us see which models should be updated.

[’Reproducability’, ’Detect-
Biases’]

[] Model failed to assign code

Continous Integration of AI models. [’ContinuousIntegration’] [’Automation’, ’Continuous-
Integration’]

Model failed

Similarly to dataBOMs, it could help with
reproducing studies, better collaboration,
faster iteration and improvements ofmodel.
Bugs, biases, and fairness issues could be
discovered quickly.

[’ProblemLocation’, ’Im-
provedIteration’, ’Detect-
Biases’, ’Reproducability’,
’BetterCollaboration’]

[’Reproducability’, ’Im-
provedIteration’, ’BetterCol-
laboration’]

Model failed to assign code

First and foremost, help manage compli-
ance risk.

[’Compliance’] [’Compliance’] Exact Match

Investigating Using LLM for Close-Coding Tasks on Software Engineering Domain Conference’17, July 2017, Washington, DC, USA

Figure 5. Exact matches for different questions

generated a code similar to the one assigned by the human
annotator; the orange color () represents cases where the
human annotator failed to assign the correct code; and the
red color () indicates that the model either assigned the
wrong code or failed to generate code.

Summary of RQ1: Our study shows that out of
160 survey responses, the LLaMA models produced
exact matches for 55 responses, resulting in an exact
match rate of approximately 34%.

4.2 RQ2: How many cases model added new code or
fail to assign the code?

The results indicate that the models frequently failed to as-
sign the correct codes to survey responses. As shown in
Figure 6, the model demonstrated limited accuracy in sev-
eral instances. For the machine learning question: "How can
we ensure that AIBOMs completely and correctly
report all the dependencies of ML/DL systems?, the
model correctly assigned the expected code in only 5 out of
20 responses. In the remaining 15 cases, it either introduced
new codes not present in the human-coded ground truth or
omitted relevant codes. Notably, the model failed to assign
11 expected codes across these responses. In another ques-
tion: What are some of the benefits you expect to
see from using AIBOMs, if any?, the model achieved
9 correct code assignments out of 20. However, in 7 of the
remaining 11 responses, it generated codes that were not in-
cluded in the ground truth. For critical project question: How
do your projects obtain the list of dependencies?
Are there any specific tools or techniques used
to that end?, The model correctly assigned codes in 4 out
of 20 responses. It introduced new codes in 14 cases and
failed to generate any code in 6 responses. We examined

the most frequently added and omitted codes to further an-
alyze these discrepancies. The model incorrectly added the
code BadAnswer for the machine learning-related questions
in 6 out of 20 responses. In the critical project responses,
the model added the code ToolAssisted in 4 instances. Ad-
ditionally, the model consistently failed to assign the code
ReproduceModel in the machine learning context, and Pack-
ageFile in the critical project context, despite their presence
in the human-coded annotations. These findings highlight
significant gaps between model-generated codes and human
annotations, particularly in terms of both false positives
(added codes) and false negatives (missed codes).

Summary of RQ2: The results show that the mod-
els often failed to assign the correct codes to survey
responses. The model often added or removed code
for survey responses.

4.3 RQ3: How many cases model added at least one
code which is present in the human-written
code?

As illustrated in Figure 6, the model frequently generated
codes that were not present in the ground-truth, or it fre-
quently failed to generate code. In this context, a "removed"
code refers to a situation where a code present in the ground
truth, such as BadAnswer, is not produced by the model, and
instead a different, unrelated code, such as ReproduceModel,
is generated. In some cases, the model removed the correct
code without generating any new code in its place. Across
the 160 survey responses analyzed, each response was anno-
tated with a minimum of one and a maximum of six codes
in the ground truth. Out of the 160 responses, the model
achieved exact matches in 55 cases. Among the remaining
105 cases, we further examined partial overlaps and found
that in 47 of these, the model generated at least one code
that matched a code in the ground truth. In Figure 7, shown
that for the survey question Q3, the model generates 4 exact
matches. However, the model generates at least one code 14
times, which are present in the ground truth. This suggests
that while exact agreement was limited, the model was still
partially aligned with human annotations in most cases. The
model failed to generate an exact match due to the code
definitions and the way the human annotator assigned the
codes.

Conference’17, July 2017, Washington, DC, USA Robiul et al.

Figure 6. Analysis of coding errors: additions, omissions, and matches

Summary of RQ3: The analysis reveals that the
model frequently failed to generate the correct set
of codes, either omitting expected ones or introduc-
ing unrelated codes. Out of 160 survey responses,
exact matches with human annotations were found
in only 55 cases. However, in 47 of the remaining
105 responses, the model produced at least one cor-
rect code from the ground truth. This indicates that
while full agreement was limited, the model showed
partial alignment with human coding in many cases.

4.4 RQ4: How many cases did the model generate the
perfect code but the human annotator failed ?

In this section, we examine instances where the model as-
signed a code based on the provided definition, but the cor-
responding code was not included in the human-annotated
ground truth. To better understand these discrepancies, we
manually analyzed all survey responses where the model-
generated code differed from the human annotations. As
illustrated in Figure 6, the model more frequently added new
codes rather than omitted expected ones. This raises the
question of whether these additions indicate genuine errors
by the model or oversights by the human annotators. Table
5 presents several examples of such cases, where the model

Figure 7. Distribution of exact matches and partial
matches per survey question

generated codes that were not present in the ground truth. It
is important to acknowledge that human annotators are also
susceptible to errors, particularly when interpreting open-
ended responses. To investigate further, we analyzed why the
model added new codes or failed to generate certain expected
codes. As discussed in RQ3, although the model generated

Investigating Using LLM for Close-Coding Tasks on Software Engineering Domain Conference’17, July 2017, Washington, DC, USA

at least one correct code for 47 out of 160 responses, these
were not considered exact matches due to mismatches in
the number or completeness of the codes, and potentially
due to errors in the ground truth itself. For example, in the
first row of Table 5, the model assigned the code BadAnswer,
which was not present in the human annotations. According
to the codebook, BadAnswer should be used when the re-
sponse does not address the question or is irrelevant. In the
corresponding survey response, the participant begins with
"not sure if there is a way", which the model interpreted as a
non-answer, justifying the use of the BadAnswer code. Based
on the definition, this code appears to be appropriate and
may have been mistakenly omitted by the human annotator.
In the second example, the model assigned the code Auto-
matedTool, which again was not present in the ground truth.
The code definition specifies that this label should be used
when the response mentions the use of a tool. In the given
response, the term "API" is mentioned, which the model in-
terpreted as a reference to a tool, thereby assigning the code
AutomatedTool. This assignment appears justifiable based
on the definition. In contrast, the third response in the table
demonstrates a failure case. The ground truth contains two
codes: DetectBiases and Reproducibility. The model correctly
assigned DetectBiases but failed to assign Reproducibility.
According to the codebook, Reproducibility applies when the
response discusses simplifying work or making processes
easier. However, the survey response did not contain any
reference to ease of work or process simplification, which
likely explains why the model did not assign this code. In
the Figure 7, for question 5 the model failed to assign code
for
These findings suggest that some of the mismatches be-

tween model output and human annotation may not neces-
sarily reflect model errors, but rather reveal the subjectivity
and potential inconsistencies in human coding.

Summary of RQ4: This analysis highlights that
some mismatches between model-generated and
human-coded responses may stem from human
oversight rather than model error. In several cases,
the model correctly applied codes based on defini-
tions, while human annotators may have missed
them. These findings underscore the subjectivity
and inconsistency that can occur in manual qualita-
tive coding.

4.5 RQ5: What is the impact of agents agreements on
exact match?

As shown in Figure 6, our approach generated more codes
for survey question Q7: What main challenges do you
foresee in the creation and use of DataBOMs? To
evaluate the consistency of code assignments, we used a

Figure 8. Comparison of exact matches, human anno-
tation errors, and llama model errors across survey
questions

3-agent, 3-prompt setup, resulting in a total of 9 decisions
per survey response (Figure 2). Across Figures 6, 5, 7, and
8, we report results based on agent agreement. Specifically,
if at least 6 out of 9 decisions returned “yes,” we accepted
the code for that response. However, to explore the effect of
decision thresholds, we also varied the required agreement
from 3 to 9 yes votes.

Figure 9. Exact match count across different levels of
agreement in a 3-agent, 3-prompt LLM framework
(total of 9 decisions per case)

Figure 9 illustrates how exact match performance changes
with different yes count thresholds. When the threshold was
set to 3, the model achieved 7 exact matches. With 5 yes
votes, it peaked at 12 exact matches. Interestingly, increasing
the threshold beyond this point led to a drop in exact match
performance. At the strictest level 9 yes votes themodel again
produced only 7 exact matches, the same as with the lowest
threshold. This suggests that requiring too much agreement
may limit the model’s ability to assign correct codes.

Conference’17, July 2017, Washington, DC, USA Robiul et al.

Table 5. Survey response, code and definition

No. Survey response Code definition Code Verdict

1 Not sure if there is a way, at the moment.
An automated tool for checking that what
is reported in the AIBOM is correct and
complete would be useful. I do not know to
what extent that would be feasible, though.

The response doesn’t answer
the asked question. The re-
sponse is incoherent, ram-
bling, etc.

BadAnswer Added

2 Universal API can provide this information. Response proposes the use
of a tool, even if the specific
details aren’t clear.

AutomatedTool Added

3 As with DataBOMs, one big benefit is the
ability to better detect biases and reproduce
results.

AIBOMs make it easier to re-
produce a work.

Reproducability Removed

Summary of RQ5:We analyzed how varying the
agreement threshold among 9 LLM decisions af-
fected exact match performance. The results show
that a moderate threshold (e.g., 5 or 6 yes votes)
yields the highest number of exact matches, while
stricter thresholds reduce the model’s ability to as-
sign correct codes.

5 THREATS TO VALIDITY
Internal Validity
The choice of data sources may influence our study. To en-
sure the internal validity of our study, we kept the exper-
imental setup consistent throughout the evaluation of the
LLMs. All survey responses were analyzed using the same
prompts, a fixed set of codes, and identical model config-
urations across runs. We also manually reviewed cases to
understand whether mistakes came from the model or pos-
sible issues in the human-coded data. To further improve
reliability, we compared outputs from multiple agents in-
stead of relying on a single model’s decision.

External validity The external validity of our study is
limited to the specific setting of software engineering survey
data and the fixed codebook we used for coding. In our study,
we achieved approximately 30% accuracy, highlighting the
need for further refinement and validation of the approach.
Since the prompts were designed for software engineering,
the results might not transfer well to other domains. Fu-
ture research using a wider range of datasets and coding
approaches is needed to understand how well this method
works in different contexts.

6 CONCLUSTIONS
In this study, we explored the effectiveness of large language
models, particularly LLaMA 3 variants, in supporting quali-
tative open coding of survey responses in the context of soft-
ware engineering. We implemented a multi-agent evaluation
framework that involved three LLaMA models (LLaMA3-
70B, LLaMA3-70B-Instruct, and LLaMA3-8B) and applied
three structurally distinct prompts to assess model perfor-
mance across nine combinations. Our findings reveal that
while exact code matches betweenmodel outputs and human
annotations were limited, the models were still able to pro-
duce partially aligned codes in a majority of cases. Through
detailed error analysis, we identified frequent patterns of
code addition and omission. Notably, the models often added
new codes that were not present in the ground truth, raising
questions about whether these were genuine model errors
or potential oversights in human annotation. Manual in-
spection showed that, in some instances, model-generated
codes were justifiable based on the code definitions, indi-
cating the potential for LLMs to offer valuable second opin-
ions or corrections in the coding process. While important,
we also emphasized that exact match evaluation does not
fully capture the nuanced capabilities of LLMs in qualita-
tive analysis. As demonstrated in our results, even when
the model failed to match the full set of human-assigned
codes, it often identified at least one relevant code, suggest-
ing potential for supporting or augmenting human coding
efforts. Overall, this work highlights both the promise and
limitations of LLMs in qualitative coding tasks. While cur-
rent models are not yet reliable enough to replace human
coders entirely, they can provide meaningful assistance and
flag cases for deeper human review. Future work should
explore fine-tuning LLMs on domain-specific annotation
examples, incorporating human-in-the-loop feedback, and

Investigating Using LLM for Close-Coding Tasks on Software Engineering Domain Conference’17, July 2017, Washington, DC, USA

improving prompt design to enhance model reliability and
interpretability in qualitative research settings.

References
[1] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot train-

ing LLMs for project-specific code-summarization. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–5.

[2] Julia Bailey. 2008. First steps in qualitative data analysis: transcribing.
Family practice 25, 2 (2008), 127–131.

[3] Amanda Barany, Nidhi Nasiar, Chelsea Porter, Andres Felipe Zam-
brano, Alexandra L Andres, Dara Bright, Mamta Shah, Xiner Liu, Sab-
rina Gao, Jiayi Zhang, et al. 2024. ChatGPT for education research:
exploring the potential of large language models for qualitative code-
book development. In International conference on artificial intelligence
in education. Springer, 134–149.

[4] Youngjin Chae and Thomas Davidson. 2023. Large language models
for text classification: From zero-shot learning to fine-tuning. Open
Science Foundation (2023).

[5] Kerry Dhakal. 2022. NVivo. Journal of the Medical Library Association:
JMLA 110, 2 (2022), 270.

[6] Tyna Eloundou, SamManning, Pamela Mishkin, and Daniel Rock. 2023.
Gpts are gpts: An early look at the labor market impact potential of
large language models. arXiv preprint arXiv:2303.10130 (2023).

[7] Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally, Weijian Zheng,
Meikang Qiu, and Haihua Chen. 2023. Investigating Code Generation
Performance of ChatGPT with Crowdsourcing Social Data. In 2023
IEEE 47th Annual Computers, Software, and Applications Conference
(COMPSAC). 876–885. doi:10.1109/COMPSAC57700.2023.00117

[8] Jie Gao, Yuchen Guo, Gionnieve Lim, Tianqin Zhang, Zheng Zhang,
Toby Jia-Jun Li, and Simon Tangi Perrault. 2024. CollabCoder: A Lower-
barrier, Rigorous Workflow for Inductive Collaborative Qualitative
Analysis with Large Language Models. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI,
USA) (CHI ’24). Association for Computing Machinery, New York, NY,
USA, Article 11, 29 pages. doi:10.1145/3613904.3642002

[9] Google. 2025. Gemini. https://gemini.google.com/app/. April 2025
version.

[10] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav
Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Alex Vaughan, et al. 2024. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783 (2024).

[11] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code
search. In Proceedings of the 40th International Conference on Software
Engineering. 933–944.

[12] Perttu Hämäläinen, Mikke Tavast, and Anton Kunnari. 2023. Evalu-
ating Large Language Models in Generating Synthetic HCI Research
Data: a Case Study. In Proceedings of the 2023 CHI Conference on Hu-
man Factors in Computing Systems (Hamburg, Germany) (CHI ’23).
Association for Computing Machinery, New York, NY, USA, Article
433, 19 pages. doi:10.1145/3544548.3580688

[13] Sungsoo Hwang. 2008. Utilizing qualitative data analysis software:
A review of Atlas. ti. Social Science Computer Review 26, 4 (2008),
519–527.

[14] Md Robiul Islam. 2024. Application of Multimodal Large Language
Models in Autonomous Driving. arXiv preprint arXiv:2412.16410
(2024).

[15] Bernard J Jansen, Soon-gyo Jung, and Joni Salminen. 2023. Employing
large language models in survey research. Natural Language Processing
Journal 4 (2023), 100020.

[16] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim.
2024. A Survey on Large Language Models for Code Generation. arXiv
preprint arXiv:2406.00515 (2024).

[17] Udo Kuckartz and Stefan Rädiker. 2019. Analyzing qualitative data
with MAXQDA. Springer.

[18] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrit-
twieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, et al. 2022. Competition-level code generation
with alphacode. Science 378, 6624 (2022), 1092–1097.

[19] Meta. 2025. Llama. https://www.llama.com/models/llama-3/. April
2025 version.

[20] Meta. 2025. Ollama. https://github.com/ollama/ollama. April 2025
version.

[21] Mohamed Nejjar, Luca Zacharias, Fabian Stiehle, and IngoWeber. 2025.
Llms for science: Usage for code generation and data analysis. Journal
of Software: Evolution and Process 37, 1 (2025), e2723.

[22] OpenAI. 2025. ChatGPT. https://chat.openai.com/. April 2025 version.
[23] Replication Package. [n. d.]. https://github.com/robiul-islam-rubel/

LLMs-for-close-coding-software-engineering.
[24] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jor-

dan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Ro-
man Ring, Susannah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446 (2021).

[25] Zeeshan Rasheed, Muhammad Waseem, Aakash Ahmad, Kai-Kristian
Kemell, Wang Xiaofeng, Anh Nguyen Duc, and Pekka Abrahamsson.
2024. Can large language models serve as data analysts? a multi-
agent assisted approach for qualitative data analysis. arXiv preprint
arXiv:2402.01386 (2024).

[26] Zeeshan Rasheed, Muhammad Waseem, Malik Abdul Sami, Kai-
Kristian Kemell, Aakash Ahmad, Anh Nguyen Duc, Kari Systä, and
Pekka Abrahamsson. 2024. Autonomous agents in software develop-
ment: A vision paper. In International Conference on Agile Software
Development. Springer Nature Switzerland Cham, 15–23.

[27] Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano
Di Penta, Daniel M German, and Denys Poshyvanyk. 2024. BOMs
Away! Inside the Minds of Stakeholders: A Comprehensive Study of
Bills of Materials for Software Systems. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (Lisbon, Portu-
gal) (ICSE ’24). Association for Computing Machinery, New York, NY,
USA, Article 44, 13 pages. doi:10.1145/3597503.3623347

[28] Robert H Tai, Lillian R Bentley, Xin Xia, Jason M Sitt, Sarah C
Fankhauser, Ana M Chicas-Mosier, and BG Monteith. 2023. Use of
large language models to aid analysis of textual data. (2023).

[29] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng,
andNeel Sundaresan. 2020. Unit test case generationwith transformers
and focal context. arXiv preprint arXiv:2009.05617 (2020).

[30] Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto
Olmo, and Subbarao Kambhampati. 2023. On the planning abilities
of large language models (a critical investigation with a proposed
benchmark). arXiv preprint arXiv:2302.06706 (2023).

[31] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and
Denys Poshyvanyk. 2020. On learning meaningful assert statements
for unit test cases. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 1398–1409.

[32] AlexanderWuttke, Matthias Aßenmacher, Christopher Klamm, MaxM
Lang, Quirin Würschinger, and Frauke Kreuter. 2024. AI Conversa-
tional Interviewing: Transforming Surveys with LLMs as Adaptive
Interviewers. arXiv preprint arXiv:2410.01824 (2024).

[33] Ziang Xiao, Xingdi Yuan, Q Vera Liao, Rania Abdelghani, and Pierre-
Yves Oudeyer. 2023. Supporting qualitative analysis with large lan-
guage models: Combining codebook with GPT-3 for deductive coding.
In Companion proceedings of the 28th international conference on intel-
ligent user interfaces. 75–78.

[34] Ziang Xiao, Xingdi Yuan, Q. Vera Liao, Rania Abdelghani, and Pierre-
Yves Oudeyer. 2023. Supporting Qualitative Analysis with Large Lan-
guageModels: Combining Codebookwith GPT-3 for Deductive Coding.

https://doi.org/10.1109/COMPSAC57700.2023.00117
https://doi.org/10.1145/3613904.3642002
https://gemini.google.com/app/
https://doi.org/10.1145/3544548.3580688
https://www.llama.com/models/llama-3/
https://github.com/ollama/ollama
https://chat.openai.com/
https://github.com/robiul-islam-rubel/LLMs-for-close-coding-software-engineering
https://github.com/robiul-islam-rubel/LLMs-for-close-coding-software-engineering
https://doi.org/10.1145/3597503.3623347

Conference’17, July 2017, Washington, DC, USA Robiul et al.

In Companion Proceedings of the 28th International Conference on In-
telligent User Interfaces (Sydney, NSW, Australia) (IUI ’23 Companion).
Association for Computing Machinery, New York, NY, USA, 75–78.
doi:10.1145/3581754.3584136

[35] Chunyan Zhang, Junchao Wang, Qinglei Zhou, Ting Xu, Ke Tang,
Hairen Gui, and Fudong Liu. 2022. A survey of automatic source code

summarization. Symmetry 14, 3 (2022), 471.
[36] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug

fixes. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 913–923.

https://doi.org/10.1145/3581754.3584136

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORK
	2.1 Large Language Models in Software Engineering
	2.2 Large Language Models in Qualitative Research

	3 STUDY METHODOLOGY
	3.1 Dataset
	3.2 Pre-processing
	3.3 Prompt Engineering
	3.4 Agents

	4 RESULTS
	4.1 RQ1: How model generate the same code as a human annotator?
	4.2 RQ2: How many cases model added new code or fail to assign the code?
	4.3 RQ3: How many cases model added at least one code which is present in the human-written code?
	4.4 RQ4: How many cases did the model generate the perfect code but the human annotator failed ?
	4.5 RQ5: What is the impact of agents agreements on exact match?

	5 THREATS TO VALIDITY
	6 CONCLUSTIONS
	References

